

Seasonal School Demo and Assigments

For Programming and ExecutionTools

Katarzyna Rycerz, Eryk Ciepiela, Daniel Harezlak, Tomasz Gubala, Jan Meizner, Grzegorz Dyk, Marian Bubak, ACC Cyfronet AGH Krakow, Poland

On the example of Irrigation Canals Application

Mohamed Ben Belgacem and BastienChopard University of Geneva, Switzerland

CAPACITIES

01.02.12

UNIGE & CYFRONET

The Mapper project receives funding from the EC's Seventh Framework Programme (FP7/2007-2013) under grant agreement n RI-261507.

Multiscale Programing and Execution tools

- Support composition of multiscale simulations from single scale models
 - encapsulated as scientific software components
 - distributed in various
 European e-Infrastructures
 - supporting loosely coupled and tightly coupled paradigm
- based on Multiscale Modelling Language (MML)

Mapper Memory (MaMe)

- Semantics-aware
 persistence store
- Records MML-based metadata about models and scales
- Supports exchanging and reusing MML metadata for
 - other MAPPER tools via REST interface
 - human users within theConsortium via dedicated Web interface

MultiscaleApplication Designer (MAD)

- Supports composing multiscale applications from submodels and mappers registered in MaMe
- Inport/export coupling topology represented in gMML to/from XMML file
- Transforms high level MML description into executable experiment for GridSpace Experiment Workbench

GridSpaceExperimentWorkbenc

A P P R

- Supports execution and result management of infrastructure independent experiments
- **Experiment** application composed of code fragments called **snippets**, expressed in:
 - general-purpose scripting programming languages(Bash, Ruby, Perl etc.)
 - domain-specific languages (CxA in MUSCLE, LAMMPS, Matlab etc)
- Snippets are evaluated by respective programs called interpreters
- Executors- responsible for snippets execution on various computational resources servers, clusters, grid via
 - direct SSH on UserInterface (UI) machine
 - Interoperability layer (QCG, AHE)
- Each snippet of the same experiment can be executed on different resource

6

ExampleUseCase CanalApplication

- Tightly coupled Java based canal simulation using MUSCLE
- Stand-alone canal visualizer
 and movie maker

declare kernels which can be launched in the CxA cxa.add_kernel('submodel_instance1, 'my.submodelA') cxa.add_kernel('submodel_instance2', 'my.submodelB')

```
# configure connection scheme of the CxA
```

```
cs = cxa.cs
```

```
# configure unidirectional connection betweenkernels
cs.attach ' submodel_instance1'=> 'submodel_instance2' do
    tie 'portA', 'portB'
```

..... end ...

Irrigation Canals Application

Objectives:

- Provide a mutiscale based model for the entire irrigation canal network "La Bourne".
- A activecontrol and optimal management :
 - History of the main unusual events/perturbations.
 - To run several scenarios in order to find the optimal configuration.
 - A real-time-control and optimization of the water exploitation

Canal network "La Bourne" features:

- 15-30 millions m³ of water are distributed to ~9000 clients for a total irrigated area of 10,000 ha
- It measures 46 km of length
- It includes several junctions: tunnels, bridges, spillway, ...etc.

Water Model of DifferentScales (MML submodels)

taken from: Pham van Thang et al. Journal of Computational Physics, 229(19):7373/7400,

JunctionsTypes for Shallow water 1D

Example schema

Demo and Assigments